
1 Linear maps and the Rank theorem

1.1 Linear maps

Definition 1. Let f : S −→ S ′ be a function. The image or range of f , denoted
Im(f), is a subset of S ′ given by:

Im(f) = {y ∈ S ′ | there exist x ∈ S such that f(x) = y}.

Definition 2. Suppose that V and V ′ are both vector spaces over R. A function
f : V −→ V ′ is a called a linear map if it satisfies:

1. f(x+ x′) = f(x) + f(x′) for all x, x′ ∈ V .

2. f(ax) = af(x) for all x ∈ V and a ∈ R

Example 3. Take the vector space C 1(R) of continuously differentiable functions on
R. And consider the derivative D : C 1(R) −→ C 1(R). This is an example of a linear
map on a vector space of infinite dimension since:

D(f + g) = D(f) +D(g) and D(af) = aD(f) for all a ∈ R, f ∈ C 1(R).

The same map D also defines a linear map on the vector space Pn of polynomial
functions of degree at most n.

Example 4. Take V = Rn, V ′ = Rm and f : V −→ V ′ given by x 7→ Ax where A is
a m× n-matrix. This is, for x ∈ Rn, the result y = f(x) is in Rm:

f(x) =


y1
y2
...
ym

 =


a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n

...
...

. . .
...

am,1 am,2 · · · am,n



x1
x2
...
xn

 ,

where yi = ai,1x1 + . . . ai,nxn for each i = 1, . . . ,m.

Proposition 5. A map f : Rn −→ Rm is linear if and only if it is given as f(x) = Ax
for some m× n-matrix A.

Proof. The linear map f is determined by the values on the basis {e1, e2, . . . , en} of
Rn. On the other hand, the evaluation at each of this vectors is uniquely written as
linear combination of the basis {e′1, . . . , e′m} in Rm. We can find therefore, for any
linear map f : Rn −→ Rm numbers ai,j such that

f(ej) =
m∑
i=1

aije
′
i,

providing us with a matrix representation for f given by the matrix A = (ai,j).
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Once we are working with vector spaces and linear maps, we can define:

Definition 6. Suppose that V and V ′ are both vector spaces over R and f : V −→ V ′

is a linear map. The kernel of f , denoted ker(f), is defined to be

ker(f) = {x ∈ V | f(x) = 0}

Proposition 7. Suppose that V and V ′ are both vector spaces over R and f : V −→ V ′

is a linear map. Then ker(f) is a subspace of V and the image Im(f) is a subspace
of V ′.

Definition 8. Suppose that V and V ′ are both vector spaces over R and f : V −→ V ′

is a linear map. The dimension of ker(f) is called the nullity of f . The dimension
of Im(f) is called the rank of f .

Proposition 9. Let f(x) = Ax be a linear map f : Rn −→ Rm, then the rank and
the nullity of f coincide with the rank and the nullity of A.

Proof. This is not hard to see from the definitions of rank and nullity. The dimension
of column space is the dimension of the image

Im(f) = x1c1 + . . . xncn.

On the other hand, the NullSpace of A is just the kernel of the map f(x) = A(x).

Theorem 10. (Rank Theorem) Suppose that V and V ′ are both vector spaces over
R and f : V −→ V ′ is a linear map. Assume that dim(V ) = n is finite, then we have
the equality:

nullity(f) + rank(f) = n.

Proof. Let k = nullity(f) and consider a basis {v1, . . . , vk} of ker(f) as a subspace of
V . We can always extend this basis, to a basis {v1, . . . , vk, vk+1, . . . , vn} of the whole
V . We would like to prove that the system of vectors {f(vk+1), . . . , f(vn)} is a basis
of the subspace Im(f) of V ′.

1. (Span) Let y ∈ Im(f). Then y = f(x), for some x ∈ V . As x is an element of V
and {v1, . . . , vk, vk+1, . . . , vn} is a basis, we can find a unique set of coefficients
ai ∈ R such that x = a1v1 + · · ·+ akvk + ak+1vk+1 + · · ·+ anvn. But then:

y = f(x) = f(a1v1 + · · ·+ akvk + ak+1vk+1 + · · ·+ anvn)

= a1f(v1) + · · ·+ akf(vk) + ak+1f(vk+1) + · · ·+ anf(vn)

= a1 · (0) + · · ·+ ak · (0) + ak+1f(vk+1) + · · ·+ anf(vn)

= ak+1f(vk+1) + · · ·+ anf(vn).

And we obtain that the system of vectors {f(vk+1), . . . , f(vn)} span the image
Im(f).
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2. (Linearly independent) Suppose that a linear combination of {f(vk+1), . . . , f(vn)}
gives 0. Say that we have

λk+1f(vk+1) + · · ·+ λnf(vn) = 0.

But then f(λk+1vk+1 + · · · + λnvn) = λk+1f(vk+1) + · · · + λnf(vn) = 0 and the
element x′ = λk+1vk+1 + · · ·+λnvn will be in the kernel of f . Since {v1, . . . , vk}
is a basis of ker(f) and the whole system {v1, . . . , vk, vk+1, . . . , vn} is linearly
independent, the only possibility is that x′ = 0 and

λk+1 = λk+2 = · · · = λn = 0.

We have therefore obtained that the vectors {f(vk+1, . . . , f(vn)} are linearly
independent in V ′.

As a combination of (1) and (2), we have proven that {f(vk+1), . . . , f(vn)} is a basis
of Im(f) and the dimension of Im(f), which is the rank of f , is n − k. In any case,
we have:

nullity(f) + rank(f) = k + (n− k) = n.

Definition 11. Let f : S −→ S ′ be a function between sets S and S ′. The function
f is said to be:

(1) injective or one-to-one if f(x) = f(x′)⇒ x = x′ and

(2) surjective or onto if Im(f) = S.

A function that is both injective and surjective is called bijective.

Proposition 12. Suppose that V and V ′ are both vector spaces over R and f : V −→
V ′ is a linear map.

(1) The map f is injective if and only if the kernel is trivial subspace ker(f) = {0}.

(2) Assuming V ′ has finite dimension, the map f is surjective if and only if the
rank rank(f) = dim(V ′).

Proof. (1) The condition ker(f) = {0} is clearly necessary. On the hard

f(x) = f(x′)⇒ f(x− x′) = 0⇒ x− x′ ∈ ker(f).

Therefore the condition ker(f) = {0} is sufficient as well.
(2) The subspace Im(f) has dimension equal to dim(V ′) if and only if V ′ = Im(f).

Corollary 13. If f : V −→ V ′ is a bijective linear map between finite dimension
vector spaces V and V ′, then dim(V ) = dim(V ′).
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