1 Linear maps and the Rank theorem

1.1 Linear maps

Definition 1. Let $f: S \longrightarrow S^{\prime}$ be a function. The image or range of f, denoted $\operatorname{Im}(f)$, is a subset of S^{\prime} given by:

$$
\operatorname{Im}(f)=\left\{y \in S^{\prime} \mid \text { there exist } x \in S \text { such that } f(x)=y\right\} .
$$

Definition 2. Suppose that V and V^{\prime} are both vector spaces over \mathbb{R}. A function $f: V \longrightarrow V^{\prime}$ is a called a linear map if it satisfies:

1. $f\left(x+x^{\prime}\right)=f(x)+f\left(x^{\prime}\right)$ for all $x, x^{\prime} \in V$.
2. $f(a x)=a f(x)$ for all $x \in V$ and $a \in \mathbb{R}$

Example 3. Take the vector space $C^{1}(\mathbb{R})$ of continuously differentiable functions on \mathbb{R}. And consider the derivative $D: C^{1}(\mathbb{R}) \longrightarrow C^{1}(\mathbb{R})$. This is an example of a linear map on a vector space of infinite dimension since:
$D(f+g)=D(f)+D(g) \quad$ and $\quad D(a f)=a D(f) \quad$ for all $\quad a \in \mathbb{R}, f \in C^{1}(\mathbb{R})$.
The same map D also defines a linear map on the vector space P_{n} of polynomial functions of degree at most n.

Example 4. Take $V=\mathbb{R}^{n}, V^{\prime}=\mathbb{R}^{m}$ and $f: V \longrightarrow V^{\prime}$ given by $x \mapsto A x$ where A is a $m \times n$-matrix. This is, for $x \in \mathbb{R}^{n}$, the result $y=f(x)$ is in \mathbb{R}^{m} :

$$
f(x)=\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{m}
\end{array}\right)=\left(\begin{array}{cccc}
a_{1,1} & a_{1,2} & \cdots & a_{1, n} \\
a_{2,1} & a_{2,2} & \cdots & a_{2, n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m, 1} & a_{m, 2} & \cdots & a_{m, n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right),
$$

where $y_{i}=a_{i, 1} x_{1}+\ldots a_{i, n} x_{n}$ for each $i=1, \ldots, m$.
Proposition 5. A map $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ is linear if and only if it is given as $f(x)=A x$ for some $m \times n$-matrix A.

Proof. The linear map f is determined by the values on the basis $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ of \mathbb{R}^{n}. On the other hand, the evaluation at each of this vectors is uniquely written as linear combination of the basis $\left\{e_{1}^{\prime}, \ldots, e_{m}^{\prime}\right\}$ in \mathbb{R}^{m}. We can find therefore, for any linear map $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ numbers $a_{i, j}$ such that

$$
f\left(e_{j}\right)=\sum_{i=1}^{m} a_{i j} e_{i}^{\prime}
$$

providing us with a matrix representation for f given by the matrix $A=\left(a_{i, j}\right)$.

Once we are working with vector spaces and linear maps, we can define:
Definition 6. Suppose that V and V^{\prime} are both vector spaces over \mathbb{R} and $f: V \longrightarrow V^{\prime}$ is a linear map. The kernel of f, denoted $\operatorname{ker}(f)$, is defined to be

$$
\operatorname{ker}(f)=\{x \in V \mid f(x)=0\}
$$

Proposition 7. Suppose that V and V^{\prime} are both vector spaces over \mathbb{R} and $f: V \longrightarrow V^{\prime}$ is a linear map. Then $\operatorname{ker}(f)$ is a subspace of V and the $i m a g e \operatorname{Im}(f)$ is a subspace of V^{\prime}.

Definition 8. Suppose that V and V^{\prime} are both vector spaces over \mathbb{R} and $f: V \longrightarrow V^{\prime}$ is a linear map. The dimension of $\operatorname{ker}(f)$ is called the nullity of f. The dimension of $\operatorname{Im}(f)$ is called the rank of f.

Proposition 9. Let $f(x)=A x$ be a linear $\operatorname{map} f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$, then the rank and the nullity of f coincide with the rank and the nullity of A.

Proof. This is not hard to see from the definitions of rank and nullity. The dimension of column space is the dimension of the image

$$
\operatorname{Im}(f)=x_{1} c_{1}+\ldots x_{n} c_{n} .
$$

On the other hand, the NullSpace of A is just the kernel of the map $f(x)=A(x)$.
Theorem 10. (Rank Theorem) Suppose that V and V^{\prime} are both vector spaces over \mathbb{R} and $f: V \longrightarrow V^{\prime}$ is a linear map. Assume that $\operatorname{dim}(V)=n$ is finite, then we have the equality:

$$
\operatorname{nullity}(f)+\operatorname{rank}(f)=n .
$$

Proof. Let $k=\operatorname{nullity}(f)$ and consider a basis $\left\{v_{1}, \ldots, v_{k}\right\}$ of $\operatorname{ker}(f)$ as a subspace of V. We can always extend this basis, to a basis $\left\{v_{1}, \ldots, v_{k}, v_{k+1}, \ldots, v_{n}\right\}$ of the whole V. We would like to prove that the system of vectors $\left\{f\left(v_{k+1}\right), \ldots, f\left(v_{n}\right)\right\}$ is a basis of the subspace $\operatorname{Im}(f)$ of V^{\prime}.

1. (Span) Let $y \in \operatorname{Im}(f)$. Then $y=f(x)$, for some $x \in V$. As x is an element of V and $\left\{v_{1}, \ldots, v_{k}, v_{k+1}, \ldots, v_{n}\right\}$ is a basis, we can find a unique set of coefficients $a_{i} \in \mathbb{R}$ such that $x=a_{1} v_{1}+\cdots+a_{k} v_{k}+a_{k+1} v_{k+1}+\cdots+a_{n} v_{n}$. But then:

$$
\begin{aligned}
y=f(x) & =f\left(a_{1} v_{1}+\cdots+a_{k} v_{k}+a_{k+1} v_{k+1}+\cdots+a_{n} v_{n}\right) \\
& =a_{1} f\left(v_{1}\right)+\cdots+a_{k} f\left(v_{k}\right)+a_{k+1} f\left(v_{k+1}\right)+\cdots+a_{n} f\left(v_{n}\right) \\
& =a_{1} \cdot(0)+\cdots+a_{k} \cdot(0)+a_{k+1} f\left(v_{k+1}\right)+\cdots+a_{n} f\left(v_{n}\right) \\
& =a_{k+1} f\left(v_{k+1}\right)+\cdots+a_{n} f\left(v_{n}\right) .
\end{aligned}
$$

And we obtain that the system of vectors $\left\{f\left(v_{k+1}\right), \ldots, f\left(v_{n}\right)\right\}$ span the image $\operatorname{Im}(f)$.
2. (Linearly independent) Suppose that a linear combination of $\left\{f\left(v_{k+1}\right), \ldots, f\left(v_{n}\right)\right\}$ gives 0 . Say that we have

$$
\lambda_{k+1} f\left(v_{k+1}\right)+\cdots+\lambda_{n} f\left(v_{n}\right)=0 .
$$

But then $f\left(\lambda_{k+1} v_{k+1}+\cdots+\lambda_{n} v_{n}\right)=\lambda_{k+1} f\left(v_{k+1}\right)+\cdots+\lambda_{n} f\left(v_{n}\right)=0$ and the element $x^{\prime}=\lambda_{k+1} v_{k+1}+\cdots+\lambda_{n} v_{n}$ will be in the kernel of f. Since $\left\{v_{1}, \ldots, v_{k}\right\}$ is a basis of $\operatorname{ker}(f)$ and the whole system $\left\{v_{1}, \ldots, v_{k}, v_{k+1}, \ldots, v_{n}\right\}$ is linearly independent, the only possibility is that $x^{\prime}=0$ and

$$
\lambda_{k+1}=\lambda_{k+2}=\cdots=\lambda_{n}=0
$$

We have therefore obtained that the vectors $\left\{f\left(v_{k+1}, \ldots, f\left(v_{n}\right)\right\}\right.$ are linearly independent in V^{\prime}.

As a combination of (1) and (2), we have proven that $\left\{f\left(v_{k+1}\right), \ldots, f\left(v_{n}\right)\right\}$ is a basis of $\operatorname{Im}(f)$ and the dimension of $\operatorname{Im}(f)$, which is the rank of f, is $n-k$. In any case, we have:

$$
\operatorname{nullity}(f)+\operatorname{rank}(f)=k+(n-k)=n
$$

Definition 11. Let $f: S \longrightarrow S^{\prime}$ be a function between sets S and S^{\prime}. The function f is said to be:
(1) injective or one-to-one if $f(x)=f\left(x^{\prime}\right) \Rightarrow x=x^{\prime}$ and
(2) surjective or onto if $\operatorname{Im}(f)=S$.

A function that is both injective and surjective is called bijective.
Proposition 12. Suppose that V and V^{\prime} are both vector spaces over \mathbb{R} and $f: V \longrightarrow$ V^{\prime} is a linear map.
(1) The map f is injective if and only if the kernel is trivial subspace $\operatorname{ker}(f)=\{0\}$.
(2) Assuming V^{\prime} has finite dimension, the map f is surjective if and only if the $\operatorname{rank} \operatorname{rank}(f)=\operatorname{dim}\left(V^{\prime}\right)$.

Proof. (1) The condition $\operatorname{ker}(f)=\{0\}$ is clearly necessary. On the hard

$$
f(x)=f\left(x^{\prime}\right) \Rightarrow f\left(x-x^{\prime}\right)=0 \Rightarrow x-x^{\prime} \in \operatorname{ker}(f) .
$$

Therefore the condition $\operatorname{ker}(f)=\{0\}$ is sufficient as well.
(2) The subspace $\operatorname{Im}(f)$ has dimension equal to $\operatorname{dim}\left(V^{\prime}\right)$ if and only if $V^{\prime}=\operatorname{Im}(f)$.

Corollary 13. If $f: V \longrightarrow V^{\prime}$ is a bijective linear map between finite dimension vector spaces V and V^{\prime}, then $\operatorname{dim}(V)=\operatorname{dim}\left(V^{\prime}\right)$.

